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Vision-Aided Inertial Navigation for Flight Control
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Many onboard navigation systems use the Global Positioning System to bound the errors
that result from integrating inertial sensors over time. Global Positioning System informa-
tion, however, is not always accessible since it relies on external satellite signals. To this
end, a vision sensor is explored as an alternative for inertial navigation in the context of an
Extended Kalman Filter used in the closed-loop control of an unmanned aerial vehicle. The
filter employs an onboard image processor that uses camera images to provide information
about the size and position of a known target, thereby allowing the flight computer to derive
the target’s pose. Assuming that the position and orientation of the target are known a priori,
vehicle position and attitude can be determined from the fusion of this information with iner-
tial and heading measurements. Simulation and flight test results verify filter performance
in the closed-loop control of an unmanned rotorcraft.

Nomenclature
Fi = {xi, yi, zi} inertial reference frame
Fb = {xb, yb, zb} body reference frame
Fc = {xc, yc, zc} camera reference frame
q = [q1, q2, q3, q4]T attitude quaternions of Fb relative to Fi

r = [x, y, z]T position vector of the vehicle measured from the datum
R = [X, Y, Z]T relative position vector of the target’s center from the vehicle
t position vector of the target’s center measured from the datum
n vector normal to the plane of the target
A area of target
f camera focal length—relates pixels to angular displacement
FOV camera field of view angle
α pixel measurement of the square root of the target area in the camera image
u pixel y-position of the target center in the camera image
v pixel z-position of the target center in the camera image
z = [a, u, v]T measurement vector
ψc camera pan angle (rotation angle of Fc relative to Fb about the zb-axis)
θc camera tilt angle (rotation angle of Fc relative to Fb about the yb-axis)
Ljκ direction cosine matrix converting from components in Fκ to components in Fj

yκ vector y expressed as components in Fκ
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I. Introduction

UNMANNED aerial vehicles (UAVs) typically use a combination of the Global Positioning System (GPS) and
inertial sensors for navigation and control. The GPS position data bounds the errors that accumulate from

integrating linear acceleration and angular rate readings over time. However, this combination of sensors is not
reliable enough for sustained autonomous flight in environments such as urban and indoor areas and at low altitudes
where a GPS receiver antenna is prone to losing line-of-sight with satellites. Problems might also be encountered
for vehicles operating in adversarial environments where access to the GPS network might possibly be jammed or
otherwise denied.

Recent advances in the field of machine vision have shown great potential for vision sensors as an alternative
to GPS in inertial navigation for obtaining aircraft position data. With a wealth of information available in each
captured image, camera-based subsystems have a large margin for growth as onboard sensors. Furthermore, vision
sensors allow for feature-based navigation through surrounding environments—a task impossible with GPS and
inertial sensors alone. The research presented in this paper thus intends to apply recent advances in the field of image
data processing to the classic problem of estimating the position and attitude of an aircraft by using a camera-based
vision sensor for the role of positional correction in inertial navigation.

The notion of using machine vision as a secondary or primary means of aircraft navigation has seen a fair amount
of progress over recent years. One of the first applications of vision-based sensors in avionics has been for assisting
aircraft during landing.1–4 Others have extended the capabilities of onboard cameras to include assisting UAVs in
navigation during flight.5–8 There has even been some success in controlling aircraft with vision-based sensors as
the sole source of feedback.9

However, only recently have researchers begun seriously investigating the application of vision sensors in inertial
navigation.10–12 The problem of controlling position relative to a known feature point with only a camera and inertial
sensors has been addressed.13

Researchers used closed-loop control to maneuver a robotic arm manipulator to a desired position relative to a
point light source representing the feature point. Results from the experiment showed that an Extended Kalman Filter
could not converge to reliable estimates with only camera pixel position information of the feature point. A modified
filter was presented as an alternative solution.

The use of vision sensors in the inertial navigation of a ground robot has also been investigated.14 Researchers have
developed a system for a ground robot that uses the epipolar constraint to derive residuals based on measurements
between two images and the vehicle motion as indicated by inertial sensors. Under the assumption of perfect orienta-
tion knowledge from flawless gyroscopes, the estimator corrects positional errors resulting from accelerometer drift.

The research presented in this paper builds upon previous work in the field of vision-based aircraft navigation by
demonstrating the feasibility of vision-aided inertial navigation in the closed-loop control of an airborne system. This
paper describes an Extended Kalman Filter (EKF) that uses information from camera images to correct the position
and attitude estimates derived from inertial sensors for the navigation of an UAV. The experimental conditions of this
research are first described, followed by a detailed description of the filter implementation, and finally simulation
and flight-test results are presented in conclusion.

II. Experimental Setup
For this experiment, a rotorcraft UAV was selected as the test vehicle. The helicopter navigates towards a building

using GPS, a magnetometer, and inertial sensors for navigation. Upon reaching the target building, the GPS is ignored.
Vision-based position estimates, obtained from images of one of the building’s windows, are then utilized in the EKF
to bound the errors that result from integrating linear acceleration and angular rate readings over time.

A. Vehicle Description
The Georgia Institute of Technology GTMax helicopter, shown in Fig. 1, was selected as the test vehicle.15

The GTMax is a modified Yamaha R-Max helicopter UAV that is equipped with dual flight computers, an inertial
measurement unit (IMU), a differential GPS receiver, and a 3-axis magnetometer. An adaptive neural-network
feedback controller uses EKF state estimates, obtained from the sensor array, to guide the helicopter appropriately.
For this experiment, a commercially available CCD camera is included in addition to the normal flight hardware
configuration, along with an image processor for interpreting visual images from the camera. The image processor
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Fig. 1 The GTMax UAV helicopter.

is capable of detecting a dark square against a light background and provides the square root of the object’s area and
the position of the object’s center in the camera image.9

B. Assumptions
It is assumed that the target is a stationary dark 2D square against a light background to simplify the requirements of

computationally expensive image processing. The target’s position, orientation, and area are also known beforehand.
Regarding camera geometry, the assumptions are made that the distance from the camera to the vehicle center of
mass is negligible and that the horizontal and vertical focal lengths are the same.

III. Position Estimation from Camera Images
The EKF estimates vehicle position using three measurements of a target obtained from camera images: the

square root of the target’s area (α) and the pixel y and z positions of the target center in the camera image (u and
v respectively). Since the position and orientation of the target are known, the vision-based estimator needs only to
determine the pose of the target to resolve the helicopter’s position. This section first provides some fundamentals
on relating 3D position to 2D images, and then describes the implementation of the EKF.

A. Relating 3D Position to 2D Images
A perspective projection model of a pinhole camera allows position in a 2D camera image to be inferred from 3D

position as shown in Fig. 2.9,16 The model projects an arbitrary point (A, B, C) to a pixel point (b, c) on the image
plane (the camera image) according to the following relations:

b = f
B

A
(1)

c = f
C

A
, (2)

where f is the focal length of the camera. The focal length depends solely on the image width in pixels of the camera
image (w) and the angle of the field of view (FOV ), both of which are characteristics of the camera, according to

f = w

2 tan
(

FOV
2

) . (3)

Note that typically the scale factors for the horizontal and vertical axes are not identical, but they are assumed to be
within acceptable tolerances for this experiment.
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Fig. 2 Camera perspective projection model used for relating 3D position to position in 2D images. The point
(A, B, C) is projected onto the camera image plane to the point (b, c).

B. Reference Frames
Three frames of reference are used in this paper. The inertial reference frame is a local inertial frame with its

origin centered at the position of the differential GPS tower on the ground. The camera frame has its origin at the
camera’s principal point with the xc axis along the camera’s optical axis, whereas the body frame is the conventional
aircraft body frame centered at the vehicle center of mass. Vector components in the different reference frames can
be transformed using direction cosine matrix sequences as follows:

Lcb =



cos θc 0 − sin θc

0 1 0

sin θc 0 cos θc







cos ψc sin ψc 0

− sin ψc cos ψc 0

0 0 1


 (4)

Lbi =



q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q2
1 − q2

2 − q2
3 + q2

4


 (5)

Lci = LcbLbi . (6)

Lcb is a rotation sequence that converts vectors from components in the body frame to components in the camera
frame by using the pan (ψc) and tilt (θc) angles of the camera. Note, however, that the transformation from the
body to the camera frame accounts for only the orientation differences between the two frames. The fact that the
camera frame is centered at the camera location, whereas the body frame is centered at the vehicle center of mass,
is neglected. Lbi is a standard rotation matrix from the body to the local inertial frame expressed in quaternions.

C. Extended Kalman Filter (EKF) Formulation
The vision-based EKF is a mixed continuous-discrete time filter. The process model uses a continuous-time lin-

earized model of the helicopter dynamics to predict expected values for the state variables, whereas the measurement
model runs at discrete time steps to correct the process model’s estimates by using camera measurements.17 The EKF
measurement vector consists of the horizontal and vertical Cartesian coordinates (in pixels) of the target center in the
camera image, and the square root of the target area in pixels. By comparing predicted values of the measurement
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vector with actual measurements from the image processor, the EKF is able to maintain estimates of the helicopter’s
position and attitude.

1. Process Model
The process model for the EKF is a dynamic helicopter model that utilizes 16 states: attitude quaternions, position
and velocity as components in the inertial reference frame, and accelerometer and gyroscope biases. In the process
model phase of the EKF estimation algorithm, two main events occur. First, the state estimate x̂ is updated using the
derivative of the state vector obtained directly from inertial measurements. Simultaneously, the covariance matrix P
is updated according to the Differential Lyapunov Equation. The process model can be expressed as the following
set of differential equations

˙̂x(t) = f (x̂(t), t) (7)

Ṗ(t) = AP + PAT + Q (8)

where x̂ is the state estimate, f (x̂(t), t) is the nonlinear helicopter model, P is the error covariance matrix, A is a
matrix representing the linearized helicopter dynamics, and Q is a diagonal matrix representing the process noise
inherent in the system model. Values for the Q matrix were initially set by using rough approximations derived from
modeling assumptions, and then tuning the values based on data from subsequent flight tests.

2. Measurement Model
The helicopter generates expected values of the measurement vector by using the known position, attitude, and

size of the window in conjunction with the helicopter state predicted by the dynamic process model. As shown in
Fig. 3, the vector from the helicopter to the target window in the camera frame can be found by taking the difference
between the known position vector to the target and the helicopter’s predicted position expressed as components in
the inertial frame. The result can then be converted from the inertial reference frame to the camera frame, giving

Rc = Lci(ti − ri ). (9)

Previously described image plane relations provide the basis for the model of the measurement vector, z =
[α, u, v]T . Camera u and v measurements follow directly from (1) and (2). To find the square root of the target area

Fig. 3 Vectors used in describing the EKF measurement model.
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in pixels, α, the actual window area is projected onto the image plane and then scaled to pixels according to

u = f
Y

X
(10)

v = f
Z

X
(11)

α = f

X

√
A

n · R
‖n‖ · ‖R‖ . (12)

Rc = [X, Y, Z]T is the relative position vector of the target window from the helicopter expressed as components of
the camera frame. The vector n is the normal vector of the target window derived from the window’s known attitude.
The given area of the window is represented by A and f is the camera focal length as described before.

The EKF makes use of the measurement model to update the result from the integration of the process model
given in (7) and (8), at a rate of 10 Hz for both the camera and magnetometer readings. In this update phase of
the state estimation, the Kalman gain is first computed. This gain is used as a weighting to fuse the actual camera
measurements with the predicted measurements, given by the measurement model in (10)–(12), thus correcting the
a priori process model estimate according to the following equations

K = P−CT (CP−CT + V)−1 (13)

x̂ = x̂− + K[z − h(x̂−
)] (14)

P = (I − KC)P− (15)

where K is the Kalman gain, V is a diagonal matrix representing measurement noise in the camera sensor, C is
the Jacobian of the measurement vector with respect to the state vector, also denoted by

(
∂z
∂x

)
, and h(x̂−

) is the
predicted measurement vector as given by the measurement model in (10)–(12). Minus superscripts in the above
equations denote a priori values obtained from the process model equations. The results from (13)–(15) are used
by the process model in the next time step to further propagate the state vector and the covariance matrix, and the
procedure is repeated. Constant values for the measurement error covariance matrix V were roughly estimated based
on the physical properties of the camera such as the focal length and dimensions of the CCD array. These parameters
could be tuned using data from subsequent flight tests, but the inaccuracies from using an initial approximation were
deemed acceptable for the purpose of demonstrating the filter’s feasibility.

As can be seen from (13)–(15), the EKF requires the Jacobian matrix of the measurement vector with respect
to the vehicle states of the helicopter, C, to fuse the camera information with inertial data. Measurements from the
camera are only affected by vehicle position and attitude, hence the partial derivatives with respect to the other state
variables (vehicle velocity and accelerometer and gyroscope biases) are identically zero. The linearization of the
measurement model with respect to vehicle position in the local inertial reference frame is obtained from (9)–(12) as

∂z
∂ri

=
(

∂z
∂Rc

) (
∂Rc

∂ri

)
(16)

∂z
∂Rc

= f

X2




√
A 0 0

−Y X 0

−Z 0 X


 (17)

∂Rc

∂ri

= −Lci . (18)

The linearized model of the measurement vector with respect to body attitude quaternions is computed in a similar
fashion, giving

∂z
∂q

=
(

∂z
∂Rc

)
Lcb

(
∂Rb

∂q

)
(19)
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where Rb is the relative position vector of the target’s center from the vehicle, expressed as components of the body
frame.

It should be noted, however, that there exists a nontrivial latency in the visual information path due to the
computational intensity of the image processing. The time that it takes to calculate the measurement vector from
visual information, provided by the camera’s framegrabber, is not negligible and needs to be taken into account. To
mitigate this effect, a simple latency compensation scheme is employed. In the update phase of the EKF, the onboard
computer uses state information that has been stored in memory for the latency period of time as opposed to using
the most up to date state estimate. This prevents the EKF from comparing the current state estimate information
with a camera snapshot that was actually taken some time ago. The system latency was estimated empirically from
flight test data by finding the latency value that minimized the least squares error between the predicted camera
measurements, found by applying the measurement model to recorded state data obtained using GPS, and the actual
recorded camera measurements from the flight.

IV. Simulation Results
Simulation tests were used initially to verify the vision-based filter’s performance. In the particular scenario

presented in this section, the helicopter begins at a position 120 ft away from a 12.6 ft2 window and uses only an
IMU, a magnetometer, and a camera as sensors for navigation. The helicopter hovers and then performs a 7.5 ft step
up in altitude, a 10 ft step parallel to the window, and a 10 ft step towards the window. The state estimates obtained
from the vision-based EKF are used in the closed-loop control of the vehicle in this test.

A. Simulation Environment
Performance of the vision-based EKF was validated using the simulation environment shown in Fig. 4.15 The

simulation includes a nonlinear helicopter model in addition to sensor models for the IMU, the magnetometer, the
vision sensor, and GPS. Synthetic images of the rendered environment are used as image processor inputs. The aircraft
model has six rigid-body degrees of freedom and includes dynamics for the engine, fuel, landing gear, and rotor.

Fig. 4 An image from the simulation environment used for testing the EKF. The top right simulation window
represents information from the onboard image processor. Two helicopters are actually shown in the simulation to
represent the actual position of the helicopter and the estimated position as determined by the EKF. The yellow circle
indicates the trajectory commanded to the helicopter’s controller to maneuver towards the position commanded by
the user, which is specified by the location of the purple circle. In the simulations that were performed, the helicopter
representing the estimated position tended to maintain a closer proximity to the yellow trajectory ring than the
helicopter representing the actual position.
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Sensor models include errors, mounting location and orientation, and time delays in the transfer of data. Modeling
errors and environmental disturbances, worse than those expected to be experienced during flight, are also injected
into the simulation.

B. Simulation Data
Figure 6 compares the position estimates from the vision-based EKF with positional information obtained from

GPS. Figure 7 shows the positional errors of the filter as calculated by the difference between the estimated and
true positions given by GPS readings. These plots express all positions as components of the relative coordinate
system defined in Fig. 5. The fact that the GPS receiver antenna is not located at the vehicle center of mass has been
accounted for by including a bias in the raw GPS position data.

It can be seen from the data that the vision-based EKF is capable of maintaining a state estimate within a
neighborhood of the actual position as represented by the GPS position measurements. This bound on the error in
the presence of the commanded step inputs demonstrates the convergence of the filter. The maximum difference
between the estimated and actual positions are 9.2 ft, 4.7 ft, and 1.9 ft in the xw, yw, and zw directions respectively.
Simulation tests revealed that the EKF is sensitive to variations in magnetometer readings because the selected
measurement vector of [α, u, v]T , in conjunction with inertial measurements alone, is not sufficient to uniquely
determine the position of the aircraft relative to the target. This occurs because the camera can obtain identical
[α, u, v]T readings for a multitude of positions and attitudes. Simulations revealed that the introduction of a bias
into the raw magnetometer readings resulted in the helicopter settling into a new steady-state position offset from the
desired position, and increasing the standard deviation of noise in the magnetometer caused the vehicle to oscillate
along an arc around the target. Heading information from the magnetometer is required to fix the azimuth of the
helicopter along this arc.

V. Flight Test Results
Figures 8 and 9 show results from a flight test in which the vision-based EKF is used in the closed-loop control

of the GTMax helicopter. These plots compare estimates from the EKF with positional information obtained from
GPS. As in the simulation results of the previous section, a bias has been included in the raw GPS position data
to account for the fact that the GPS receiver antenna is not located at the vehicle center of mass. Flight tests were
conducted using a mock square window setup with an area of 36 ft2.

The flight test results demonstrate the capability of the EKF to converge and maintain a position estimate accurate
to within a neighborhood of the actual position as represented by the GPS measurements, verifying the simulation
results. The maximum difference between the estimated and actual positions are 9.6 ft, 8.3 ft, and 4.0 ft in the
xw, yw, and zw directions respectively. Biases in the xw and yw directions could potentially be caused by biases in
the magnetometer readings as described in the discussion of the simulation results. Differences occur between the
simulated and actual results because the simulation models the ideal situation where distortion and noise effects
of the camera are neglected and the window is a perfect dark target against a white background. The EKF is less
sensitive to noise in the camera images when the helicopter is closer to the target.

Fig. 5 The relative coordinate system used for plotting the simulation and flight test results.
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Fig. 6 Results from a simulation test comparing position estimates from the vision-based EKF with positional
information obtained from GPS. Positions are expressed in coordinates relative to the center of the the target
window (see Fig. 5). The helicopter starts at a location 120 ft from the target and is given a step input of 7.5 ft up in
altitude, a 10 ft step parallel to the plane of the window, and finally a 10 ft step towards the window. The target’s
center is located at [54, 69, −5] ft with a normal vector of [−0.86, −0.50, 0.00] expressed in North, East, Down
coordinates.
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Fig. 7 Error plots from the simulation results. Error was calculated as the difference between the estimated position
and GPS (a worst case representation of actual position). The maximum error magnitudes are 9.2 ft, 4.7 ft, and 1.9 ft
in the xw, yw , and zw directions respectively.

VI. Conclusion
This paper presented an EKF approach for the vision-aided inertial navigation of an UAV using only an IMU,

camera, and magnetometer as sensors for navigation. Using camera images of a target whose position and attitude are
given, the vehicle can determine position relative to the target, and therefore derive position in the world. Results from
simulation and flight tests verified that utilizing a vision-based sensor in this manner for aiding inertial navigation
successfully bounds the errors that result from integrating the inertial sensors over time.

With further development, vision sensors could become a viable alternative to GPS in inertial navigation for
applications where the risks associated with a dependency on external signals is not acceptable. Firstly, the bound
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Fig. 8 Results from a flight test of the GTMax helicopter comparing position estimates from the vision-based EKF
with positional information obtained from GPS. Positions are expressed in coordinates relative to the center of the
the target window (see Fig. 5). The helicopter performs a 7.5 ft step up in altitude, a 10 ft step parallel to the window,
and finally a 10 ft step towards the window. The target’s center is located at [65.5, −100.5, 0.0] ft with a normal
vector of [−0.64, 0.77, 0.00] expressed in North, East, Down coordinates.

on the position estimate from the filter could be tightened. This could be achieved by using more advanced cameras
intended for metrology applications, as opposed to the commercial-grade camera used for this experiment, or by
possibly expanding the capabilities of the image processor to include the ability to track multiple targets. Having the
capability to track multiple targets simultaneously would also decrease the UAV’s reliance on the magnetometer for
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Fig. 9 Error plots from the flight test results. Error was calculated as the difference between the estimated position
and GPS. The maximum error magnitudes are 9.6 ft, 8.3 ft, and 4.0 ft in the xw, yw , and zw directions respectively.

heading information. In the long term, it is hoped that UAVs will be able to actively track and acquire new visual
targets in real-time as they proceed along their flight paths so that vision-aided inertial navigation can be used for a
variety of missions.
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